Comparison of Communication Ability Stage with And Amyotrophic Lateral CLOS ON Tracheostomy Invasive Ventilation (TIV) Miki Nakayama¹, Chiharu Matsuda¹, Toshio Shimizu², Yoko Mochizuki³, 4, Kentaro Hayashi², Masahiro Nagao² Moratory of Nursing Research for Intractable Disease, Tokyo Metropolitan Institute of Medical Science, 2. Department of Neurol Partment of Pathology, Tokyo Metropolitan Neurological Hospital, 4. Department of Neurology. Tokyo Metropolitan Disease Research, Shinshu University School of Medicine Adverse Clinical Signs in Patients with Amyotrophic Lateral

Patients with amyotrophic lateral sclerosis

Number of ALS patients and ventilator users in Tokyo

Duration of Ventilation becomes long

Stage of communication ability

(ALS) on tracheostomy invasive ventilation (**TIV**) :

Lives long time 1) Have adverse clinical signs Develop communication impairment with disease progression 2)

The appropriate care and to maintain communication ability become important a classification of advanced ALS focusing on the patient's communication ability. 3)

Hayashi et al.2013

References

1) Tokyo Metropolitan specific resarch for Intractible disease ,2013 2) Nakayama Y, Ogura A, Matsuda C. J. J. Intrac. III. Nurs 2010;14:179-93. 3) Hayashi K, et al. Rinsho Shinkeigaku 2013; 53:98-103.

2. Objective

To clarify the relationship between the stages of communication ability and adverse clinical signs in ALS patients on TIV.

Our multi-disciplinary research team

3. Methods

Subject : 46 patients with ALS on TIV at home from 2005 to 2013.

Collected Data : sex, age of onset, duration of disease, duration of TIV, and time from onset to start of TIV. Incidence of adverse clinical signs

Data analysis : Classified subjects into three groups by stage of communication ability at the last observation point.

Comparison of three groups by the the Kruskal-Wallis test performed using SPSS, version 21.

16 adverse clinical signs

Voluntary movement

- fatigability of eye movement
- dry eye
- drooling or dry mouth
- megaloglossia

Infections

- otitis media
- Pneumonia

Autonomic dysfunction

- unstable blood pressure
- disturbance of thermoregulation
- dysuria

Others

- tracheal granuloma
- Cholelithiasis
- urinary stones
- Decubitus

p-values ≤ 0.05 were considered significant.

•	urina	ry	tract	infec	tions
---	-------	----	-------	-------	-------

	Decubitus
•	Nausea

• unstable blood glucose

4. Results

1. Patients Characteristics

	Stage I 21 (45.6%)	Stage II ~ IV 19 (41.4%)	Stage V 6 (13.0 %)
Sex (men)	14(66.7%)	13 (68.4%)	3 (50.0%)
Age at onset (median year-old)	52.0	60.0	56.0
Bulbar onset patients	5(23.8%)	4 (21.1%)	1(16.7%)
duration of disease (median months)	129.0	107.0	140.5
duration of TIV (median months)	71.0	86.0	122.5
time from onset to start of TIV. (median months)	59.0	27.0	24.0
Number of adverse clinical signs	4.0	7.0	9.5

Duration of disease

Time from onset to start TIV *

Duration of TIV

Number of signs ***

5. Discussion

Several type of ALS patients

Who maintain stage I Ventilator needs slowly Had not many adverse clinical signs Who progress stage II~IV or V Rapid disease progression Ventilator needs early phase Had various adverse clinical signs

2. 16 adverse clinical signs

Voluntary movement

Autonomic dysfunction

Infections

Others

6. Conclusion

We found that the patients with ALS in advanced stages showed an early requirement for TIV had more adverse signs. Clinicians should give careful attention to the adverse signs of ALS patients on TIV to prevent communication impairment.

This work supported by JSPS KAKENHI Grant Number 25293449.

Relationship between Adverse Clinical Signs and progression of **Communication Impairment in Patients with Amyotrophic Lateral** Sclerosis (ALS) on Tracheostomy Invasive Ventilation (SCIENCE Y Nakayama¹, T Shimizu², C Matsuda¹, M Haraguchi¹, Y Mochizuki^{3,4}, K Hayashi², T Hirai², M Nagao², A Kawata², K Oyanagi⁵

1. Laboratory of Nursing Research for Intractable Disease, Tokyo Metropolitan Institute of Medical Science, 2. Department of Neurology, Tokyo Metropolitan Neurological Hospital 3. Department of Pathology, Tokyo Metropolitan Neurological Hospital, 4. Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled 5. Department of Brain Disease Research, Shinshu University School of Medicine

Summary of this study

We found that the patients with ALS in advanced stages showed

1. Background

2. Objective

cant.

Patients with ALS on TIV : Live long time Have adverse clinical signs **Develop communication impairment** with disease progression The adverse clinical signs affect to maintain communication ability. We proposed a classification of advanced ALS focusing on the patient's communication ability.

Our multi-disciplinary research team

stage progression in ALS patients on TIV.

Purpose of this study, to clarify which adverse clinical signs are affected communication

Stage of communication ability

Stage	Level	Yes or No	Definition
Ι	Normal		communicates in sentences
II		0	communicates with one word responses
			communicates with nonverbal

an early appearance of opthalmoplegia and multisystem neurodegeneration. Clinicians should give careful attention to the adverse signs of ALS patients on TIV to prevent communication impairment.

3. Methods

Subject : 60 patients with ALS on TIV at home from 2005 to 2014.

Collected Data : sex, age of onset, duration of disease, duration of TIV, and time from onset to start of TIV. Incidence of adverse clinical signs.

Data analysis : Classified subjects into two groups(Stages I-III and IV-V) by stage of communication ability at the end point. Cox proportional hazard model was used to compare between two groups. Data analysis was performed using SPSS, version21.

p-values ≤ 0.05 were considered signifi-

16 adverse clinical signs

• unstable blood glucose

4. Results

19(31.7%) of the patients progressed stages IV-V. Their duration from onset to opthalmoplegia was early and had more adverse clinical signs.

Patients Characteristics

Stage	Stage I - III	Stage IV - V	P-value	
Patients, n (%)	41(68.3)	19(31.7)		
Males,n (%)	30 (73.9)	10(52.6)	.146	
Mean age at onset \pm SD, years	55.76 ± 12.23	55.26 ± 11.72	.882	
Bulbar onset patients, n (%)	7 (17.1)	4(21.1)	.730	
Clinical event, n (%)				
Overt oculomotor limitation	17 (41.5)	19 (100.0)	<.0001 🛪	< * :
Total quadriplegia	20(48.8)	17 (89.5)	.004 >	< <mark>*</mark>
Mean disease duration \pm SD,m	130.5 ± 85.14	161.58 ± 100.26	.252	
Mean TIV duration \pm SD,m	73.0 ± 54.17	126.9 ± 78.86	.0012 🔰	<
Mean time from onset to clinical event \pm SD,m				
Need for TIV	56.76 ± 46.52	34.79 ± 35.13	.049 🗧	<
Need for feeding tube	57.76 ± 47.83	39.84 ± 43.43	.169	
Development of overt oculomotor limitation	118.0 ± 86.17	78.86 ± 71.9	.072	
Progression to total quadriplegia	115.63 ± 85.44	74.43 ± 52.17	.088	
	P: *< 0.05	* * < 0.01 *	* * < 0.00 ²	

Incidence of Adverse Clinical Signs

Multivariate analyses for StageIV by Cox proportional hazarad model

		HR	95%CI	p-value
Onset age	years	.936	0.838-1.046	.243
Duration from onset	months	.974	0.945-1.003	.078
Duration from the onset to TPPV	months	.994	0.945-1.073	.880
Duration from the onset to opthalmoplegia	months	.907	0.854-0.963	.001
Duration from the onset to quadriplegia	months	.972	0.930-1.017	.216
fatigability of eye movement		11.36	0.003-46805	.567
unstable blood pressure		19.366	2.158-173.81	.008
disturbance of thermoregulation		5.969	1.156-30.836	.033
dysuria		65.09	2.19-1934.7	.016
	P:	* < 0.05	**< 0.01 *	**< 0.001

5. Discussion

Vicious circle of Adverse Clinical signs and Communication ability

Voluntary movement disorder by progression of ALS it's own. Adverse clinical signs Eye signs Autonomic dysfunctions

Relation to Communication

Getting worse eye movement disorder

Can't tell own idea to others

Disease duration and communication stage of 60 patients

Univariate	analy	ses (for Sta	ageIV
by Cox propo	ortion	al ha	zarad	mode

	HR	95%CI	p-value	
Sex (man vs woman)	.2.049	0.827-5.007	.121	
Onset age (years)	1.060	1.010-1.113	.018	*
Onset symptom (non-bullbar vs bulbar)	1.509	0.484-4.705	.478	
Familial or mutation (non-familial nor mutation vs familial)				
Duration from onset (months)	.981	.969-0.994	.003	*
Duration from the onset to TPPV (months)	.958	0.931-0.985	.002	*
Duration from the onset to opthalmoplegia (months)	.960	0.942-0.977	.000	* * *
Duration from the onset to quadriplegia (months)	.974	0.959-0.989	.001	**
fatigability of eye movement	10.746	1.429-80.807	0.021	*
dry eye	33.868	0.406-2824	0.119	
drooling or dry mouth,	4.115	0.544-31.106	0.17	
Megaloglossia	2.019	0.779-5.235	0.148	
unstable blood pressure	4.021	1.33-12.154	0.014	*
disturbance of thermoregulation	4.01	1.489-10.800	0.006	*
nausea	0.724	0.257-2.045	0.543	
unstable blood glucose	1.839	0.594-5.694	0.29	
otitis media	2.257	0.85-5.995	0.102	
pneumonia	1.17	0.450-3.043	0.748	
dysuria	13.546	1.805-101.64	0.011	
urinary tract infection	1.39	0.517-3.734	0.514	
cholelithiasis	1.673	0.617-4.538	0.312	
tracheal granuloma	1.45	0.522-4.026	0.476	
urinary stone	1.186	0.38-3.70	0.768	
decubitus	0.88	0.242-3.199	0.846	
	P: *	< 0.05 **<	0.01 **	* < 0,

Study Supported by: JSPS KAKENHI (Grant-in-Aid for Scientific Research (B)) Grant Number 25293449 No potential Conflict of Interest (COI) to disclose

001

Respirator-aided long-term survival cases of amyotrophic lateral sclerosis (ALS) with communication abilities, motoneuron system-confined degeneration, and scanty TDP-43 aggregation ---a subgroup of ALS?

Mochizuki Y^{1,6}, Hayashi K², Nakayama Y³, Shimizu T², Kamide M⁴, Ogino M⁵, Komori T¹, Isozaki E², Nakano I²

Department of ¹Pathology and ²Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan, ³Laboratory of Nursing Research for Intractable Disease, Tokyo, Japan, ⁴Emergency Department of Atsugi City Hospital, Kanagawa, Japan, ⁵Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan, ⁶Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan

Motor neuron system-confined degeneration

Lower motor neuron and TDP-43 aggregation

Several types of long-duration ALS

On TIV

 Very long-survival with good communication ability: present cases

Mean disease duration of ALS on TIV (61 cases) was 8 year 5 months in our 134 autopsied ALS

✓ Rapid progress into a totally locked-in state/ stage V [Hayashi H, Kato S. J Neurol Sci 93:19, 1989]

No TIV

Conclusions

A distinct subgroup of ALS?

Clinically

♦ Much slower disease progression

Maintained good communication via eye

movements in spite of survival on LTMV

Neuropathologocally

Motor neuron system-confined degeneration ♦ Remaining good-shaped motor neurons ♦A few TDP-43 immunoreactive inclusions This work supported by JSPS KAKENHI Grant Number 25293449